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AXIALLY SYMMETRIC TRANSIENT WAVE PROPAGATION
IN ELASTIC RODS WITH NONUNIFORM SECTION

P. C. Y. Leetand Y. S. WANG

Department of Civil and Geological Engineering, Princeton University, Princeton, New Jersey

Abstract—A one-dimensional approximate theory is derived for an elastic circular rod with nonuniform cross
section. Three coupled equations taking into account the longitudinal, radial and axial shear deformations and
their inertias are obtained as an extension of the Mindlin-McNiven theory to the case of nonuniform rods.
Responses of both the semi-infinite rod and finite rod with elastic end support subjected to either a step or a
pulse loading are studied by the method of characteristics. Calculated results such as stresses vs. time for different
stations along the rod and stresses as functions of distances for instants of time are presented and compared for
several cases. The geometrical effect of the variation of section on the stresses and the effect of the elastic support
on the reflection and propagation of the stress waves are deduced. Predicted and measured results are compared.

1. INTRODUCTION

ALTHOUGH the problem of elastic wave propagation in a rod with nonuniform cross section
has been a subject of interest and investigation for decades, the existing literature is not,
by far, as broad and extensive as that for rods with uniform cross section [1]. Due to the
difficulty and complexity of solving the “exact” equations of motion from the three-
dimensional theory of elasticity, approximations have often been made either in the form
of the governing equations or in the method of solutions. A simple approach is to modify
the classical one-dimensional longitudinal wave equation for a uniform rod by taking into
account the variation of area or elastic modulus along the rod. The equation so obtained
may be called the classical one-dimensional equation for rods with nonuniform im-
pedence [2], or the “Webster”” horn equation [3], of which extensive studies have been
made [4-6]. The same theory has also attracted much attention in other fields for its
practical interest, such as in the design of resonant transducers or ultrasonic concentraters
in acoustics and in the study of nonuniform electric transmission lines [7].

A parallel approach to the classical one-dimensional theory was to replace the conical
section of the rod by a series of thin discrete cylinders [4], based on which a numerical
method had been developed [8].

It is well known that the accuracy of the classical one-dimensional equation is limited
to thin rods with small changes of area and to waves which are long compared to the radius.
Thus for moderate change of area or for shorter wave lengths, modifications are necessary.
Chehil and Heaps [9] took into account the effect of lateral motion and obtained the
longitudinal equation of motion through the use of the variational principle. A similar
equation with the inclusion of lateral inertia and shear was also obtained by Martin [10].

The present paper presents a new theory. A system of three equations of motion
is derived which takes into account longitudinal as well as radial and axial shear

1 Consultant, Research Department, Grumman Aerospace Corporation, Bethpage, New York.
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deformations and their inertias. It is an extension of the Mindlin-McNiven theory [11] to
rods with nonuniform cross section. Both semi-infinite rods and finite rods subjected to
either a step or a pulse loading are studied by the method of characteristics {12, 13].
Calculated stresses are obtained and plotted for different locations as functions of time.
The geometrical effect of the varying cross section on the stresses and the effect of the elastic
end support on the reflection and propagation of stress waves are deduced. Predicted
results by the present theory are compared with measured results.

2. GOVERNING EQUATIONS FOR RODS WITH VARIABLE CROSS SECTION

The geometry of a circular rod with variable cross section is referred to a set of cylindrical
coordinate system (r, 0, z) with the z-axis coincident with the axis of the rod as shown in
Fig. 1. The rod extends from z = 0 to z = L and the radius R = R(z) is a continuous
function of 2. The displacement components in z and r directions are u, and u,, respectively
{ug = 0 on account of axial symmetry). The following equations are obtained from the
variational equations of motion in elasticity [14].

Jdo. ¢ . .
J 90z [ Tz Trz iy \ou, dv = 0
SN0z O r

- o \
f £’}-C&-F{-7'——6:63—%“6—';—;;tzli, ou, dv =0
o\ Or ¥ az

where ¢., 6,, 04, 0,, are the stress components.

To derive a set of approximate equations for motions symmetrical with respect to the
rod axis and valid for moderately high frequencies, one has to consider, in addition to the
longitudinal motion, the axial shear deformation and the radial deformation. In a manner
similar to the case of the uniform rod considered by Mindlin and McNiven [11], the
displacement components are approximated by:

2r?

u, = Wiz, t)+ (] —Rz Pz, 1), u, = iU(z,t). (2)

R

Note that in {2} R is a function of z. By substituting (2) into (1), replacing dv by 2zr dr dz,
integrating with respect to r through the interval [0, R(z)] and setting the coefficients of

FI1G. 1. Rod with variable cross section.
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oW, 8¥ and oU of the resulting equations equal to zero, one obtains the approximate
stress equations of motion:

Q. +2(R')Q +§(1+R’2)%z = pW

2
R ..
Q,,+3( )Q,ﬁ—9+ (1+R2)} S, = gu
where
0.=— f o,rdr
2
Q, = j{f ( 2)r dr
4)
2
g, = ﬁJ‘ (0, + o) dr
Qrz R3 f G, T dr
are the generalized stress components and
Z = [arz - R/U:]r =R/(1 + R,z)%
' (5)

Y =[0,—R'o,],p/(l+ R}

r

are the exact expressions for the z and r components, respectively, of the surface traction
on the lateral surface r = R(z) as shown in Fig. 1.
The strain energy density, according to the three-dimensional theory of elasticity is:

E = %(O-zsz + 0,8, + Tgtq + 2o.rzgrz) (6)
= J[Me-+ &+ o)+ 2ulel + 6 + 65 +267)]

where 4, 4 are Lamé constants and the strains are related to the displacements by

U
g = & =

R
ZR/
£, = ( )“IJ(+4 R3 v

r{ ., R, 4
&z = —ZEU———U—ET)
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Let
2 (R 1 2R 2R
U R’ 4
el Y § S

be the generalized strain energy density for the rod, which then suggests that the general-
ized strain components may be defined by:

2R’
I.=w+—VY
z + R
2R’
ly=¥Y-—Y
v R
U (8)
I=—
R
R’ 4
I,,=U-—-U—=-Y¥
rz R R

The generalized constitutive relations may be obtained by inserting (2) into the stress—
displacement relations of the three-dimensional theory and integrating the resulting
expressions with respect to r according to the definitions given in (4). This gives:

Q.= 2L, +(i+2uT.,  Q, = (A +2wT,
Qr = 4(’]“+1u)rr+2;"r2* Qr: = %Hrz

The strain energy density E may then be written in terms of the generalized strain com-
ponents :

9

E = %(erz + Qwrw + err + Qr:rrz)
1 (10)
2

= 3A+20W 2+ A+ 2w + 24+ w4+ 240, + 4ul % .
it can readily be shown that the generalized stress components are derivable from the
generalized strain energy density function E by taking its first order derivatives with respect

to the corresponding generalized strain components.
The kinetic energy density of the three-dimensional theory takes the form

T =2+,

Similarly one defines the generalized kinetic energy density for the rod:
~_ 2 (" Pz 12 1772
T=—| Trdr=(W*+3¥°+7U") (11).
R? J, 2

The generalized equations of motion (3) may now be considered as being obtained by
inserting (10) and (11) into the equations of the variational principle.
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It was stated in Ref. [11] that because the assumed displacement functions are not
exact, the expressions for the energy functions contain some inaccuracies. To compensate
these, four correction factors K, K,, K5, K, are introduced such that I, and I}, in E are
replaced by KT, and K,T,, respectively, while U and W in T are replaced by K,U and
KW, respectively. These four correction factors were obtained by matching the frequency
dispersion curves of the infinite, uniform rod with those from Pochhammer’s exact solution
[15]. The values of these factors so obtained depend on the value of Poisson’s ratio. In the
case of nonuniform rods, they also depend upon the variation of the cross section, such as
the slope of the rod radius: R’. This dependence could be investigated if a frequency
spectrum could be found for the present case and if an exact solution exists which may be
used for comparison. In lack of these informations, we are not able to obtain a rigorous
analysis of the influence of the change of radius on the correction factors. However, when
the slope of the radius is small, the correction factors derived for uniform rods should be
applicable with good accuracy. Hence the same ones are employed here with the antici-
pation that for moderate slope of the rod radius, the errors will not be significant.

In what follows it is more convenient to express the equations in terms of dimensionless
quantities. Let

z R | L w " b 4 U
x=—’ a=—’ = —, W':—, = —, = —
R, R, R, Ro R’ "R
be the dimensionless lengths and displacements, R, = R(0); let
- z T
Pz=g, sz&’ Pr:%ﬂ Prz=gzw Sz:v_zv Sr=_r
T p M T 7 T

be the dimensionless stress and surface tractions; and let

T=?O

be the dimensionless time, where
R
T, = _0
Julp

is a reference time. One then may write, with the correction factors introduced into the
energy functions,

E/u = $p*T2 + 5p2T3 4 2(p> — DK3T? + 2p> —2)K, T, + AK3T'2 (12)
T/u = 3007 + K3 + 3K3i). (13)

The equations of motion are then

Il
=

2a 2 ,
P.+—P,+=(1+a?)s,
a a

4a' 24 4 2 .
P,+—P,——P +-P_——(1 g = LK?2
vt 2 v, “+a rz a( +a'*)*S, = 3Ky (14)

3 P 2 ,
PL+72P, 4 (1 + a3, = K20,
a a a
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and for the constitutive relations the following hold :
2 4
P, = 2p? ~2)K,3+p2(w’ +—a-l//)
a a
P, 2
3 (l// a lp)
5 LU 5 , 24
P = 4(p°— 1)K15+2(p —2)K,|w +7l,0

K o 4
N PAEY

(15)

where the primes and dots denote the partial derivatives with respect to x and 7, respectively,
and

2 A2 21—
u 1—2v

is a material parameter depending only on Poisson’s ratio v.
By substituting (15) into (14) one finally obtains the displacement equations of motion:

1.2, 2 2-2)K " a?
W W —)—lu'+(2a—+2a~2)np
p pa a a

2(p2 —2K,d 2(1 + a’z)’
+ u+

=0
p’d® pla

” 12 2

K2, 6a 2 K2 K2
”——;lll—ja W j_¢+ [2“ +18“ +24; Z:Il//

62K, (p*—-2) +K2]a 6(1+a'2)'%

St 8= 0 (16)
" K2 et 4K (p _-—2) 4 4 ' 2al !
g

’ a’ 2a12 8K%(p2__l)
.-8[([) —2)‘—+1jl Zl//—liz‘*‘ az +—T§GZ— u

4 (1+a?)t

3. UNIQUENESS OF SOLUTIONS AND BOUNDARY CONDITIONS

To study the uniqueness of solutions, one may start by considering the rate of change
of total energy in the rod. This is given by the expression:
1 f’ oE oT

2~ ol
; nR?| =+ =) dx (17)
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where the rates of energy densities, from (10) and (11) are

5 ) u L oa. 4,
-é*::p[P,( +— lﬁ)“}'%(‘f’ “—'&)1‘"}’;5*"32(“ _;“—;V/)]
%—I‘“"#WW’*"& 2 + 5K Jad).

By substituting the above expressions into (17) and making use of (14) to eliminate the
accelerations, one obtains, after some manipulation, the following equation:

! E 0T
! J nR? i__+6_ dx = Ri[ra* (P + P+ P, -,
u dr Ot

R3[ma®(Pab + P+ P}l = (18)
+R3 f 2ra(l + a8 0 — )+ S,w)] dx.
0

In the case where the right end of the rod is attached to an elastic support, the cor-
responding boundary conditions are

Pl 1) = —k,w(l 1)
Pnb(la 7) = "—%kzdl(zs T) (19}
PAl,7) = —ku(l,7)

where k, = K (Ry/n), k, = K{Ry/u} are the dimensionless elastic spring constants, K, K,
are the spring constants of the elastic support in the z and r directions respectively, with
the dimensions of stress/unit length.

By substitution of (19) into the first term on the right hand side of (18) and integrating
the resulting expression with respect to time from an initial time t, to a later time t, one
obtains:

1 ! - T
[; f nRYE + T) dx + na()?R3(k,w? + 3k % + k,uz)xz,}
o

o

~ || R3a(Pas + P+ P 20)

T '
+J\ R}dr J 2ra(l + a8, (W — )+ S,4] dx.
£ 243 0

Since the constitutive relations, strain—displacement relations and equations of motion
form a linear system, the difference system which corresponds to the differences of two
sets of solutions in displacement, stress and strain, and the difference energy densities
calculated from them must also satisfy (20). Therefore by following the usual argument
based on the positive definiteness of E, T and (k,w? +1k,y* +k,u?),_,, the sufficient con-
ditions for a unique solution are:

(i) Specification of the initial condition of w, ¥, u and W, i, & throughout the rod.

(ii) Specification of one member of each of the product P,w, P,y and P,,u at the left

end of the rod (usual displacement or traction end).
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(i) The stress and displacement components satisfying the elastic relations (19) at
the end of the rod (elastically supported end).
(iv) Specification of one member of each of the product S,(w—) and S,u throughout
the rod.
In this paper, the rod is free of tractions on the lateral surface r = R(z) so that
S, = §. = 0. In case the rod is finite the right end of it is supported elastically in the z
direction and is free to move in the r direction so that k, = 0 in (19). At the left end, the rod
is subjected to a prescribed axially compressive force and the end surface remains plane.
The end conditions at x = 0 are therefore:

P0,7) = —f(1) fort >0

=0 fort <0

(21)
P,0,7)=0
Y(0,7) =0
where f (1) is a prescribed function.
Initially the rod is free of stresses and stationary, thus:
w(x,0) = ¥(x,0) = u(x,0) =0
( Y )

w(x, 0) = y(x, 0) = u(x,0) = 0.

4. METHOD OF CHARACTERISTICS

The system of second order partial differential equations (16) with proper initial and
boundary conditions (19), (21) and (22) can be solved by employing the method of
characteristics [12, 13]. The general form of the equations which may be solved by this
method is:

1
w_?mzmﬂﬁﬁﬂ. (i=12...,n) (23)

i
where ¢;, a;;, B;; are continuous functions of x. The summation convention does not apply

to the index i in (23)-(26).
The characteristic lines in the x — 7 plane are

dx_

-— = %¢ 24
G = e 24)

along which the differential equations take canonical forms

) F — d00) = (ot ) dx. 25)
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The variables u; must be continuous, but their derivatives may undergo finite jumps
across the characteristics. These are given by the decay equations

(4] = Aic,-*exp(% {6 dx)
26)

. 1
[4;] = FAcE exp(ifﬁﬁ dx

where the symbol [¢] represents the difference of ¢ just behind a characteristic line from

that just ahead of it and A; are constants to be determined by initial and boundary con-

ditions. In (24)-(26) the selection of the upper or the lower signs must be consistent.
Written in the form of (23), the displacement equations of motion (16) become:

" b= o +ogsut B W+ B + i

z
|

ol
3
|

= Gy +ay3u+ By W+ Baol + Bt (27

<

|
r?nl -

<~

|

W' —— il = o0 +ossu+ iy W+ oY + Biau;
the canonical forms of which are accordingly
A - 1 N ’ /7 ’
dw) ¥ c*d(W) = (g +oysu+ By W+ B ¥ + Byaw) dx,
1
along dx/dt = +¢,,
—_ 1 ' ! i
diy) ¥ C—d('lf) = (0p2¥ +oa3u+ By W + Boo¥’ + fr3u) dx,
2

along dx/dt = +c,,

— 1 . s ’ ’
dw) ¥ c—d(“) = (o32¥ +a33u+ B3 W + B30 + By u) dx,
3
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along dx/d7 = +c5, where

2 2
P K
G=p d-fr  d-gh
. 2a" 2a? v 2(p*—-2K,a
12 — a az s 13 — pzaz ’
" a* K3 6[2K ,(p* —2)+ Ka'
Ayp = —'+18?+245‘2‘?, Oyy = _1—%—_‘
8 L a _d* 8K3(p*-1)
%33 = ;[(PZ—Z)K%ﬁL 1], X33 = ;+2?+_T§52—
! a 2(p*-2)K,
/311 = —ZE’ ﬁ12 = _22, ﬂ13 = “—pz;z—“
a a 6K?2
ﬂZl = 6;, ﬂzz = _25- ,323 = 'pTaz-
4K [(p®2=2) 4 d
Ba1 = lKﬁ—-a s B3z = a B33 = _2;'

L}

’

(28)

The characteristics dx/dt = +c¢,, +c¢,. *c; represent the three wave speeds of the

motion in the rod. For a reasonable range of Poisson’s ratio, one may assume that

2>l >cl.

There are three characteristics emanating from the loading end of the rod at the instant
of loading, which are marked by S,. S,, S5 in Fig. 2. The first characteristic line S, is the
first wave front generated from the end which distinguishes a domain at rest from a domain
in motion. The condition just behind this wave front is the initial condition for the

BOUNDARY POINTS

F1G. 2. Characteristic network.
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numerical calculation along the characteristics. This can be obtained by considering the
decay equation along S, .

With B;; given previously and the initial and the boundary conditions at the loading
end incorporated, the decay equations (26) give:

(w]= —IQ, W] = Cl{(o) along S,

pa p-a
[Yy1=0," Wi=0 along S, (29)
(4] =0, (4] =0 along S;.

It is clear that discontinuities may occur only along S,. Since the initial state of the
rod is given by (22), the conditions just behind the first wave front are:

w = —@, Y =0, u =0,
pla
(30)
VRN
p‘a

These conditions are non-zero only when f(0) # 0.

Along the first three reflected wave fronts from the right boundary, marked by — S|,
—S,, — S, in Fig. 2, (26) also gives three jump conditions which, after substitution in the
corresponding initial and boundary conditions reduce to

0 0
w]= % W] = CIPJZZ) along —§,,
W1=0, Y1=0 along —-5,, 31
W] =0, ] =0 along —S;.

5. NUMERICAL ANALYSIS

Also shown in Fig. 2 are the characteristics drawn in discrete lines. Only the first
families, dx/dt = +c¢,, are shown as continuous lines, while the second and the third
families with dx/dt = +¢,, 4+ ¢; appear in broken segments. This is desirable because there
are no finite jumps across the second and third families of characteristics. A typical element
of the meshes of finite differences is represented by the diamond-shaped domain ABCD,
whose diagonal lengths are 2Ax and 2At in the x and 7 directions, respectively. The lines
of the characteristics are shown in the enlarged diagram on the right, in which the in-
crements Ax, and Ax; are given by

The characteristics of boundary points are also shown in the same figure.

The values of the quantities at C can be calculated from those at A, B, B,, B;, D, D,,
and D,, where the values at B,, B;, D,, and D, are in turn obtained by interpolation
from those at 4, B and D.
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The implicit method with backward-differences in 7 is used in setting up the difference
equations. Usually, the implicit method involves sclving a system of simultaneous
equations, which is not very practical if the number of equations is large. In the present
case, the number is only two or three. The numerical method is described in the following,
the convergence of which has been proved [13].

If C is an interior point, the canonical forms (28) give the following six equations
along the characteristics
along dx/dt = ¢,.

1
W'(C)—W’(D)—C—[W(C)—W(D)]
1
= [, Y(C)+ o u(C)+ B W (C)+ B1 29 (C) + 156/ (C)Ax, (32a)
along dx/dt = ¢,,
1 . ,
W(C)—W'(Dz)—c—zflﬁ[(c)—l//(l)z)]
= [0, Y(C) + 23 3u(C) + B W(C)+ B220(C) + Bo3u/ (C)]Ax 5, (32b)
along dx/dt = ¢;,
1
u’(C)—u’(D3)—:[a(C)—u(D3)]
3
= [o320(C) + 033u(C) + B3, W(C) + B30 (C) + B33/ (C)]Ax5, (32¢)
along dx/dt = —c¢,,
w(C)—w'(B) +CL[W(C) —w(B)]
1
= —[o (C) oy 3u(C) + B W(C) + 1,0 (C)+ 1,4 (C)]Ax, (33a)
along dx/dt = —c,.
1,
lV(C)—W(Bz)+c—2[l//(c)—'ﬂ(32)]
= — [, (C)+ o5 3u(C) + B2 W(C) + B, (C) + B3u'(C)]Ax,, (33b)
along dx/dt = —c;-
1
u'(C)—u/(B,) +C—['2(C) —(B;)]
3

= —[o3,Y(C) + a3 3u(C) 4 B3 W(C) + B34 (C) + B34/ (C)lAx,, (33¢)

where all the «’s and f’s take their values at C. These are supplemented by three equations
along dx/dt = 0:
W(C) = w(A)+ 2Aw(C)

W(C) = Y(A)+2A1%(C) (34)
u(C) = u(A)+ 2Ai(C).
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Equations (32)-(34) constitute a set of nine equations in terms of w, ¥, u, w', ¥, u', W,
¥, nat C.

After some manipulation, they may be reduced to a set of two simultaneous equations
involving only i and #%, which may be solved easily.

If C is a left boundary point, the three equations of (32) are replaced by the boundary
condition (21), which, combined with (15), gives

2p*— 2K, u(C)+p*w(C) = — f(O)
Y =0 (35)
u(Cy—d(0u(C) =

A system of two simultaneous equations in terms of {' and 4 may be obtained.
If C is a right boundary point, (33) should be replaced by (19) with k, = 0, which com-
bining with (15) becomes

202 —DK 24'(l
—sz(C)=£T(I)l—lu(C)+ l: (C)+ a(l())l//(c)]
2
(€)= [z/z(c a0 t//(C)] (36)

a),,
a(l) (C)— ()lll()

In this case the system may be reduced to three simultaneous equations in w, ¥ and u.

u'(C)—

6. NUMERICAL RESULTS

The transient stress wave propagations in rods with variable cross sections are in-
vestigated numerically by the method of characteristics as described in Sections 4 and 3.
Poisson’s ratio is chosen to be 0-29 and the correction factors are K; = 0-8797, K, = 1-1550,
K, = 09876 and K, = 1-4767 as were calculated by Kaul and McCoy [16]. The mesh size
is selected for Ax = 0-04 which gives At = 0-02175.

Semi-infinite rods subjected to step-loading are considered first. The purpose of this is
to separate the geometrical effect from the influence due to the wave reflections from the
end which depends strongly on the end conditions and will be studied later in detail.
Although the governing equations and numerical procedures presented earlier are applic-
able to any rod with “smooth and gradual” variation of cross-sectional area, for simplicity
the “cylinder—cone—cylinder” type of area changes were considered; these consist of an
assembly of a very short circular cylinder on the left (loading) end, a linear cone in the
middle and a semi-infinite cylinder with smaller radius on the right. Three rods with
different lengths for the conical portions are selected as shown in Fig. 3 in which a uniform
rod is also included for comparison. The generalized axial stress at positions one and two
diameters respectively from the loading end are calculated and plotted in Figs. 3(a) and (b).
In all four cases, the same step-loading is applied at the left end of the rods. For a steel rod
with end radius R, = 3 in., one unit of dimensionless time is equivalent to 23-7 usec. When
the first wave front, with dimensionless dilatational velocity ¢, = [A+ 2u)/u]?, reaches the
position of consideration (at T—x/c, = 0), the magnitude of stress is inversely proportional
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FI1G. 3. Axial stress vs. time. (a) At 1 diameter from the end. (b) at 2 diameters from the end.
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to the radius of the rod. This stress discontinuity is due to the propagation of the dis-
continuous initial value of the applied load, f(0), and its magnitude along the rod is
governed by the decay equations (29). After the first wave front has passed, the stress drops
immediately to a much lower level and then rises to a peak, which is created essentially by
the waves with bar velocity ¢, = (E/u)* < c,. After that, the stress gradually approaches
its steady state value. By comparing the stresses in rods 24 of Fig. 3(a) with those of
Fig. 3(b) one sees that the magnitude of stress increases as the cross-sectional area of the
rod decreases.

Further study is made of two rods with identical end diameter and the same loading
conditions, but with one rod having a shorter conical portion than the other, as shown
in Fig. 4. Comparison of the stresses at a station 2-6 diameters from the loading end shows
that the steeper the slope of the conical portion, the higher the stress level and the faster
the rate of approach to the steady-state value.

4.8 —
Z0
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a.0— — 2
—_— . T
LOADING VERSUS TIME | " | 1

/] 1.0

724 : Sl #
1.2 /W 1o.z-I—H-—s—-l

0.8 ’ 2.5 1.0
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OT RODS
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X
Y

FIG. 4. Axial stress vs. time at 2-6 diameters from the end.

T-

Calculations of the generalized axial and radial strains and axial velocity are also
made. The results are similar to those of the axial stresses except that the radial strains do
not have initial discontinuities when the first dilatational wave fronts arrive.

To study the effect of the end support on the reflections of stress waves from the end, a
finite rod of the same “‘cylinder—cone—cylinder” type is considered. The boundary con-
ditions of an elastic support at the right end (x = I) are given by (19) with k, = 0 as ex-
plained previously. The two extreme cases for an elastic support are the free end (k, = 0)
and the fixed end (k, = oo). Thus by calculating the stress and velocity fields in the rod for
various values of the spring constant of the support, one may investigate the effect of the
stiffness of the support on the wave reflections within the rod. For a steel cone with
R, = 3in. and u = 12 x 10° psi, the dimensionless value of k, = 1 corresponds to a spring
constant K, = 4 x 10° psi/in.
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Figure 5(a) shows the configuration of the rod and the generalized axial stress at four
positions due to a pulse loading. The elastic support at the right end has a spring constant
k., = 1. A larger value of the constant, k. = 5, is also used and the results are shown in
Fig. 5(b).

It is seen that the stress at the end of the rod with a softer support rises with a slower
rate, reaches a lower peak value but lasts longer.

Figures 6(a) and (b) show the stresses of the same system as those in Figs. 5(a) and (b)
but subjected to a modified step loading., Within the time period for the first wave front
to travel two cycles, the stresses at the positions 2-4 are considerably raised as compared
with those in Figs. 5(a) and (b). Also, the elastic support has little effect on the stress peak
when the duration of loading is long enough. As may be noted in those figures, a continuous
loading with a very short transition period (At = 0-2) is chosen to replace a step loading.
This eliminates the propagation of stress discontinuity at the first wave front but gives
rise to little effect upon the subsequent stress states. Hence it simplifies the numerical
procedure by making the consideration of the jump conditions unnecessary.

Finally, calculations are made to compare with experimental results on two specimens
as obtained by Leftheris [17]. The experimental setup is outlined in Fig. 7. A “cylinder—
cone—cylinder” stainless steel specimen is connected at the larger end to a 6 in. diameter,
12 in. long aluminum rod and at the smaller end to a 1 in. diameter, 288 in. long steel rod.
A stress wave generator is connected to the other end of the aluminum rod. This generator
produces a local, high intensity, electro-magnetic field resulting from the discharge of a
capacitor bank. The electro-magnetic field then induces a stress wave which moves into
the aluminum rod. One strain gauge (G,) is mounted on the aluminum rod 1 in. from its
right end, while another one (G,) is mounted on the steel rod 48 in. from its left end. These
two gauges measure the strain waves into and out of the specimen respectively, which are
amplified and displayed on an oscilloscope. The steel rod is long enough so that reflection
from the end has no effect within the time of consideration and the assembly may be con-
sidered as semi-infinite. The stress waves are assumed to be uniform in the aluminum rod
so that the input gauge reading at G, may be used to determine f(t) for the boundary
condition at the left end of the specimen.

Two different shapes of specimen are tested under the same loading program so that
the input data measured by the gauge G, for the two cases are essentially the same. Figure 8
shows the result of one of the tests. The upper trace is the input pulse of G,, created by the
stress wave generator, and the lower trace is the output strain wave at G,. The measured
axial surface strains at G,, which is located at 48 in. from the smaller ends of the cones,
as indicated in Fig. 8 together with the calculated results are plotted in Figs. 9 and 10 for
the 5in. (54-2° apex angle) and 24 in. (11-9° apex angle) cones, respectively.

Also appeared in these figures are the computed results from the classical one-
dimensional theory [2, 3], referred to here as the one-mode theory in contrast with the
present three-mode theory. It can be seen from Fig. 10 that the surface strain calculated
from the present three-mode theory does not differ much from that of the one-mode theory
for the 24 in. cone. However, for the 5 in. cone the present theory does appear to be better
than the classical one-mode theory as compared with the experimental result in Fig. 9.
This is in agreement with Kenner and Goldsmith’s finding [18] that the analysis of the
classical one-mode theory is valid for cones with an apex angle less than 30°. It is therefore
reasonable to conclude that for waves with shorter wave lengths and rods with larger
apex angles, the present theory is more suitable to apply.
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FIG. 5. Axial stress vs. time for finite rod subjected to pulse loading. (a) Soft elastic end support, k, = 1.
(b) Stiff elastic end support, k, = 5.
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Ab6ceTpakT—PewiaeTcs oaAHOMEpPHas NPUONHKEHHAs TEOPHA ANA YNPYTOTro KPYIJIOro CTEPKHSA € HEPABHOME-
PHEIM MOMNEPEYHBIM ceueHreM . [lonyyaroTcs TpH CONpsKEHHbIE YPAaBHEHNS , KOTOPbIE YYUTHIBAOT IPOAQIIb-
HbI€, paadaibHbie B oceObie aedopMalMi CABUTA U UX MHEPLUH. DTH ypaBHEHUA ABIAIOTCS 0000LIeHeM
Teopun MusanuHa-MakHuBeHa I Cllydyas HEOOHOPOAHBIX CTEPXKHEI.

IlyTeM MeTOAa XapaKTEPHCTHK HCCIIEAYIOTCS MOBEHEHHS KaK MOJYOGECKOHEYHOrO CTEPXKHS, Tak M
KOHEYHOTO, C YIPYIrMM OIePaHHEM KOHIOB, MOABEPKEHHbIX AEHCTBHIO MMGO CKAYKOOOpPA3HOM HATDY3KH,
WM MMIYyJIbCUBHOM. [/ pa3sHbBIX MOMEHTOB BPEMEHM [JAKOTCA MONCYMTAHHBIE PE3y/IbTAaThi, TAKUE KaK
HAMPAXKEHAS B 3aBHCUMOCTH OT BPEMEHM JUIA PA3HBIX IMOJIOXKEHUH BIOJB CTEPXHsA, B Gopme dyHxumii
PaccTOSHMS. M CPABHMBAIOTCA Ui HEKOTOPBIX Cilyyaes. Onpenensiiorcs 3aBUCHMOCTM HATPAXEHUH OT
reomMeTpuyeckoro 3QQekTa M3MEHEHUSA CeYeHHs U 3aBUCUMOCTH OTDAXEHWs M DAcnpOCTpaHEHHs BOJH
Hanpsokenuit ot addexTa ynpyroro onepaHus. CpaBHHBAIOTCS NPEACKA3AHHBIE H U3MEPEHHbIE PE3YNBTATEHI.



